Symbolic computation of Drazin inverses by specializations

作者:

Highlights:

摘要

In this paper, we show how to reduce the computation of Drazin inverses over certain computable fields to the computation of Drazin inverses of matrices with rational functions as entries. As a consequence we derive a symbolic algorithm to compute the Drazin inverse of matrices whose entries are elements of a finite transcendental field extension of a computable field. The algorithm is applied to matrices over the field of meromorphic functions, in several complex variables, on a connected domain and to matrices over the field of Laurent formal power series.

论文关键词:Drazin inverse,Analytic perturbation,Gröbner bases,Symbolic computation,Meromorphic functions,Laurent formal power series

论文评审过程:Received 7 October 2015, Revised 29 December 2015, Available online 6 February 2016, Version of Record 17 February 2016.

论文官网地址:https://doi.org/10.1016/j.cam.2016.01.059