A two-level ILU preconditioner for electromagnetic applications
作者:
Highlights:
•
摘要
Computational electromagnetics based on the solution of the integral form of Maxwell’s equations with boundary element methods require the solution of large and dense linear systems. For large-scale problems the solution is obtained by using iterative Krylov-type methods provided that a fast method for performing matrix–vector products is available. In addition, for ill-conditioned problems some kind of preconditioning technique must be applied to the linear system in order to accelerate the convergence of the iterative method and improve its performance. For many applications it has been reported that incomplete factorizations often suffer from numerical instability due to the indefiniteness of the coefficient matrix. In this context, approximate inverse preconditioners based on Frobenius-norm minimization have emerged as a robust and highly parallel alternative. In this work we propose a two-level ILU preconditioner for the preconditioned GMRES method. The computation and application of the preconditioner is based on graph partitioning techniques. Numerical experiments are presented for different problems and show that with this technique it is possible to obtain robust ILU preconditioners that perform competitively compared with Frobenius-norm minimization preconditioners.
论文关键词:65F10,65F08,65F50,31A10,Computational electromagnetism,Iterative methods,Preconditioning,Incomplete LU factorizations,Graph partitioning,Matrix reorderings
论文评审过程:Received 23 November 2015, Revised 3 March 2016, Available online 22 March 2016, Version of Record 29 August 2016.
论文官网地址:https://doi.org/10.1016/j.cam.2016.03.012