A numerical study for multiple solutions of a singular boundary value problem arising from laminar flow in a porous pipe with moving wall
作者:
Highlights:
•
摘要
This paper is concerned with multiple solutions of a singular nonlinear boundary value problem (BVP) on the interval [0,1], which arises in a study of the laminar flow in a porous pipe with an expanding or contracting wall. For the singular nonlinear BVP, the correct boundary conditions are derived to guarantee that its linearization has a unique smooth solution. Then a numerical technique is proposed to find all possible multiple solutions. For the suction driven pipe flow with the expanding wall (e.g. α=2), we find a new solution numerically and classify it as a type VI solution. The computed results agree well with what can be obtained by the bifurcation package AUTO. In addition, we also construct asymptotic solutions for a few cases of parameters, which agree well with numerical solutions. These serve as validations of our numerical results. Thus we believe that the numerical technique designed in the paper is reliable, and may be further applied to solve a variety of nonlinear equations that arise from other flow problems.
论文关键词:Singular boundary value problem,Multiple solutions,Singular perturbation method,Expanding porous circular pipe
论文评审过程:Received 5 December 2015, Revised 18 September 2016, Available online 20 October 2016, Version of Record 17 November 2016.
论文官网地址:https://doi.org/10.1016/j.cam.2016.10.002