Bèzier curves based on Lupaş (p,q)-analogue of Bernstein functions in CAGD
作者:
Highlights:
•
摘要
This paper deals with the extension of rational Lupaş Bernstein functions, Lupaş Bèzier curves and surfaces involving (p,q)-integers as shape parameters for all p>0 and q>0. Two different techniques such as de-Casteljau’s algorithm and Korovkin’s type approximation based on (p,q)-integers are used. A two parameter family for Lupaş (p,q)-Bernstein functions is constructed and their degree elevation and reduction properties have been studied. For Lupaş (p,q)-Bèzier curves, some of their basic properties as well as degree elevation and de Casteljau algorithm have been discussed. The new curves have some properties similar to Lupaş q-Bèzier curves. Similarly, the corresponding tensor product for Lupaş Bèzier surfaces over the rectangular domain (u,v)∈[0,1]×[0,1] depending on four parameters is constructed. The de Casteljau algorithm and degree evaluation properties of the surfaces for these generalizations and some fundamental properties are discussed. We get Lupaş q-Bèzier surfaces for (u,v)∈[0,1]×[0,1] when we set the parameter p1=p2=1.With the help of rational Lupaş Bernstein functions, (p,q)-Lupaş Bernstein operators are constructed. Based on Korovkin’s type approximation, it has been shown that the sequence of (p,q)-analogue of Lupaş Bernstein operators Lpn,qnn(f,x) converges uniformly to f(x)∈C[0,1] if and only if 0
论文关键词:primary,65D17,secondary,41A10,41A25,41A36,(p,q)-integers,Lupaş (p,q)-Bèzier curves and surfaces,de Casteljau algorithm,Tensor product,(p,q)-analogue of Lupaş Bernstein operators,Korovkin’s type approximation
论文评审过程:Received 10 August 2015, Revised 14 December 2016, Available online 21 December 2016, Version of Record 3 January 2017.
论文官网地址:https://doi.org/10.1016/j.cam.2016.12.016