Quintic B-spline method for solving second order linear and nonlinear singularly perturbed two-point boundary value problems

作者:

Highlights:

摘要

In this paper, we have studied a numerical scheme to solve second order singularly perturbed two-point linear and nonlinear boundary value problems. The boundary layer of this type of problems exhibits at one end (left or right) point of the domain due to the presence of perturbation parameter ε. The quintic B-spline method and suitable piecewise uniform Shishkin mesh have been used. Linear and nonlinear second order singularly perturbed boundary value problems have been solved by the present method. The convergence analysis is also provided and the method is shown to have uniform convergence of fourth order. Numerical results have demonstrated the efficiency of the present method.

论文关键词:65L10,Singularly perturbed boundary value problems,Quintic B-spline method,Shishkin mesh,Boundary layers,Quasilinearization,Uniform convergence

论文评审过程:Received 26 January 2016, Revised 5 August 2016, Available online 19 January 2017, Version of Record 30 January 2017.

论文官网地址:https://doi.org/10.1016/j.cam.2017.01.011