The use of knowledge acquisition in instructional design

作者:

Highlights:

摘要

Expert systems and knowledge based systems have emerged from “esoteric” laboratory research in Artificial Intelligence (AI) to become an important tool for approaching real world problems. Expert systems are distinctive in that they are designed to address problems in a similar manner and with similar results as a human expert. The basic structure of an expert system is comprised of three functionally separate components: (a) knowledge base, which contains a representation of domain related facts; (b) means of knowledge base use to solve a problem, inference mechanism; and (c) working memory, which records the input data and progress for each problem. Given the complexity and cost of expert system construction, it is imperative that system developers and researchers attend to research issues which are critical to knowledge engineering. These questions can be categorized according to the parts of an expert system: (a) knowledge representation; (b) knowledge utilization; and (c) knowledge acquisition. A knowledge acquisition procedure is presented which displays the relationship between subject matter expert expertise consisting of declarative knowledge, procedural knowledge, heuristics, formal rules, and meta-rules. The knowledge engineer uses one or a combination of elicitation methods to gather relevant data to eventually build the components of an expert system. Further explained are the acquisition methods: (a) structured interview; (b) verbal reports; (c) teaching the subject matter; (d) observation; and (e) automated knowledge acquisition tools. The paper concludes with a discussion of the future research issues concerned with using knowledge mapping and task analysis vs. knowledge acquisition techniques.

论文关键词:

论文评审过程:Available online 4 September 2002.

论文官网地址:https://doi.org/10.1016/0747-5632(88)90017-9