Incremental learning from noisy data

作者:Jeffrey C. Schlimmer, Richard H. Granger Jr.

摘要

Induction of a concept description given noisy instances is difficult and is further exacerbated when the concepts may change over time. This paper presents a solution which has been guided by psychological and mathematical results. The method is based on a distributed concept description which is composed of a set of weighted, symbolic characterizations. Two learning processes incrementally modify this description. One adjusts the characterization weights and another creates new characterizations. The latter process is described in terms of a search through the space of possibilities and is shown to require linear space with respect to the number of attribute-value pairs in the description language. The method utilizes previously acquired concept definitions in subsequent learning by adding an attribute for each learned concept to instance descriptions. A program called STAGGER fully embodies this method, and this paper reports on a number of empirical analyses of its performance. Since understanding the relationships between a new learning method and existing ones can be difficult, this paper first reviews a framework for discussing machine learning systems and then describes STAGGER in that framework.

论文关键词:learning from examples, contingency, systematic noise, concept drift, constructive induction

论文评审过程:

论文官网地址:https://doi.org/10.1007/BF00116895