Indexing, Elaboration and Refinement: Incremental Learning of Explanatory Cases

作者:Ashwin Ram

摘要

This article describes how a reasoner can improve its understanding of an incompletely understood domain through the application of what it already knows to novel problems in that domain. Case-based reasoning is the process of using past experiences stored in the reasoner's memory to understand novel situations or solve novel problems. However, this process assumes that past experiences are well understood and provide good “lessons” to be used for future situations. This assumption is usually false when one is learning about a novel domain, since situations encountered previously in this domain might not have been understood completely. Furthermore, the reasoner may not even have a case that adequately deals with the new situation, or may not be able to access the case using existing indices. We present a theory of incremental learning based on the revision of previously existing case knowledge in response to experiences in such situations. The theory has been implemented in a case-based story understanding program that can (a) learn a new case in situations where no case already exists, (b) learn how to index the case in memory, and (c) incrementally refine its understanding of the case by using it to reason about new situations, thus evolving a better understanding of its domain through experience. This research complements work in case-based reasoning by providing mechanisms by which a case library can be automatically built for use by a case-based reasoning program.

论文关键词:Case-based learning, explanation-based learning, index learning, questions, incremental learning

论文评审过程:

论文官网地址:https://doi.org/10.1023/A:1022634926452