Meta-interpretive learning of higher-order dyadic datalog: predicate invention revisited
作者:Stephen H. Muggleton, Dianhuan Lin, Alireza Tamaddoni-Nezhad
摘要
Since the late 1990s predicate invention has been under-explored within inductive logic programming due to difficulties in formulating efficient search mechanisms. However, a recent paper demonstrated that both predicate invention and the learning of recursion can be efficiently implemented for regular and context-free grammars, by way of metalogical substitutions with respect to a modified Prolog meta-interpreter which acts as the learning engine. New predicate symbols are introduced as constants representing existentially quantified higher-order variables. The approach demonstrates that predicate invention can be treated as a form of higher-order logical reasoning. In this paper we generalise the approach of meta-interpretive learning (MIL) to that of learning higher-order dyadic datalog programs. We show that with an infinite signature the higher-order dyadic datalog class \(H^2_2\) has universal Turing expressivity though \(H^2_2\) is decidable given a finite signature. Additionally we show that Knuth–Bendix ordering of the hypothesis space together with logarithmic clause bounding allows our MIL implementation Metagol\(_{D}\) to PAC-learn minimal cardinality \(H^2_2\) definitions. This result is consistent with our experiments which indicate that Metagol\(_{D}\) efficiently learns compact \(H^2_2\) definitions involving predicate invention for learning robotic strategies, the East–West train challenge and NELL. Additionally higher-order concepts were learned in the NELL language learning domain. The Metagol code and datasets described in this paper have been made publicly available on a website to allow reproduction of results in this paper.
论文关键词:Induction, Abduction, Meta-interpretation, Predicate invention, Learning recursion
论文评审过程:
论文官网地址:https://doi.org/10.1007/s10994-014-5471-y