A scalable preference model for autonomous decision-making
作者:Markus Peters, Maytal Saar-Tsechansky, Wolfgang Ketter, Sinead A. Williamson, Perry Groot, Tom Heskes
摘要
Emerging domains such as smart electric grids require decisions to be made autonomously, based on the observed behaviors of large numbers of connected consumers. Existing approaches either lack the flexibility to capture nuanced, individualized preference profiles, or scale poorly with the size of the dataset. We propose a preference model that combines flexible Bayesian nonparametric priors—providing state-of-the-art predictive power—with well-justified structural assumptions that allow a scalable implementation. The Gaussian process scalable preference model via Kronecker factorization (GaSPK) model provides accurate choice predictions and principled uncertainty estimates as input to decision-making tasks. In consumer choice settings where alternatives are described by few key attributes, inference in our model is highly efficient and scalable to tens of thousands of choices.
论文关键词:Autonomous agents, Autonomous decision-making, Bayesian inference, Discrete choice, Gaussian processes, Laplace inference, Preferences
论文评审过程:
论文官网地址:https://doi.org/10.1007/s10994-018-5705-5