Skew Gaussian processes for classification

作者:Alessio Benavoli, Dario Azzimonti, Dario Piga

摘要

Gaussian processes (GPs) are distributions over functions, which provide a Bayesian nonparametric approach to regression and classification. In spite of their success, GPs have limited use in some applications, for example, in some cases a symmetric distribution with respect to its mean is an unreasonable model. This implies, for instance, that the mean and the median coincide, while the mean and median in an asymmetric (skewed) distribution can be different numbers. In this paper, we propose skew-Gaussian processes (SkewGPs) as a non-parametric prior over functions. A SkewGP extends the multivariate unified skew-normal distribution over finite dimensional vectors to a stochastic processes. The SkewGP class of distributions includes GPs and, therefore, SkewGPs inherit all good properties of GPs and increase their flexibility by allowing asymmetry in the probabilistic model. By exploiting the fact that SkewGP and probit likelihood are conjugate model, we derive closed form expressions for the marginal likelihood and predictive distribution of this new nonparametric classifier. We verify empirically that the proposed SkewGP classifier provides a better performance than a GP classifier based on either Laplace’s method or expectation propagation.

论文关键词:Skew Gaussian Process, Nonparametric, Classifier, Probit, Conjugate, Skew

论文评审过程:

论文官网地址:https://doi.org/10.1007/s10994-020-05906-3