Incorporating symbolic domain knowledge into graph neural networks
作者:Tirtharaj Dash, Ashwin Srinivasan, Lovekesh Vig
摘要
Our interest is in scientific problems with the following characteristics: (1) Data are naturally represented as graphs; (2) The amount of data available is typically small; and (3) There is significant domain-knowledge, usually expressed in some symbolic form (rules, taxonomies, constraints and the like). These kinds of problems have been addressed effectively in the past by symbolic machine learning methods like Inductive Logic Programming (ILP), by virtue of 2 important characteristics: (a) The use of a representation language that easily captures the relation encoded in graph-structured data, and (b) The inclusion of prior information encoded as domain-specific relations, that can alleviate problems of data scarcity, and construct new relations. Recent advances have seen the emergence of deep neural networks specifically developed for graph-structured data (Graph-based Neural Networks, or GNNs). While GNNs have been shown to be able to handle graph-structured data, less has been done to investigate the inclusion of domain-knowledge. Here we investigate this aspect of GNNs empirically by employing an operation we term vertex-enrichment and denote the corresponding GNNs as VEGNNs. Using over 70 real-world datasets and substantial amounts of symbolic domain-knowledge, we examine the result of vertex-enrichment across 5 different variants of GNNs. Our results provide support for the following: (a) Inclusion of domain-knowledge by vertex-enrichment can significantly improve the performance of a GNN. That is, the performance of VEGNNs is significantly better than GNNs across all GNN variants; (b) The inclusion of domain-specific relations constructed using ILP improves the performance of VEGNNs, across all GNN variants. Taken together, the results provide evidence that it is possible to incorporate symbolic domain knowledge into a GNN, and that ILP can play an important role in providing high-level relationships that are not easily discovered by a GNN.
论文关键词:
论文评审过程:
论文官网地址:https://doi.org/10.1007/s10994-021-05966-z