Inductive policy: The pragmatics of bias selection
作者:Foster John Provost, Bruce G. Buchanan
摘要
This paper extends the currently accepted model of inductive bias by identifying six categories of bias and separates inductive bias from the policy for its selection (theinductive policy). We analyze existing “bias selection” systems, examining the similarities and differences in their inductive policies, and identify three techniques useful for building inductive policies. We then present a framework for representing and automatically selecting a wide variety of biases and describe experiments with an instantiation of the framework addressing various pragmatic tradeoffs of time, space, accuracy, and the cost of errors. The experiments show that a common framework can be used to implement policies for a variety of different types of bias selection, such as parameter selection, term selection, and example selection, using similar techniques. The experiments also show that different tradeoffs can be made by the implementation of different policies; for example, from the same data different rule sets can be learned based on different tradeoffs of accuracy versus the cost of erroneous predictions.
论文关键词:inductive learning, inductive bias, bias selection, inductive policy, pragmatics
论文评审过程:
论文官网地址:https://doi.org/10.1007/BF00993474