Unifying Instance-Based and Rule-Based Induction
作者:Pedro Domingos
摘要
Several well-developed approaches to inductive learning now exist, but each has specific limitations that are hard to overcome. Multi-strategy learning attempts to tackle this problem by combining multiple methods in one algorithm. This article describes a unification of two widely-used empirical approaches: rule induction and instance-based learning. In the new algorithm, instances are treated as maximally specific rules, and classification is performed using a best-match strategy. Rules are learned by gradually generalizing instances until no improvement in apparent accuracy is obtained. Theoretical analysis shows this approach to be efficient. It is implemented in the RISE 3.1 system. In an extensive empirical study, RISE consistently achieves higher accuracies than state-of-the-art representatives of both its parent approaches (PEBLS and CN2), as well as a decision tree learner (C4.5). Lesion studies show that each of RISE‘s components is essential to this performance. Most significantly, in 14 of the 30 domains studied, RISE is more accurate than the best of PEBLS and CN2, showing that a significant synergy can be obtained by combining multiple empirical methods.
论文关键词:Concept learning, multi-strategy learning, rule induction, instance-based learning, nearest-neighbor classification, case-based reasoning
论文评审过程:
论文官网地址:https://doi.org/10.1023/A:1018006431188