Mixed Memory Markov Models: Decomposing Complex Stochastic Processes as Mixtures of Simpler Ones

作者:Lawrence K. Saul, Michael I. Jordan

摘要

We study Markov models whose state spaces arise from the Cartesian product of two or more discrete random variables. We show how to parameterize the transition matrices of these models as a convex combination—or mixture—of simpler dynamical models. The parameters in these models admit a simple probabilistic interpretation and can be fitted iteratively by an Expectation-Maximization (EM) procedure. We derive a set of generalized Baum-Welch updates for factorial hidden Markov models that make use of this parameterization. We also describe a simple iterative procedure for approximately computing the statistics of the hidden states. Throughout, we give examples where mixed memory models provide a useful representation of complex stochastic processes.

论文关键词:Markov models, mixture models, discrete time series

论文评审过程:

论文官网地址:https://doi.org/10.1023/A:1007649326333