An Empirical Comparison of Pruning Methods for Decision Tree Induction

作者:John Mingers

摘要

This paper compares five methods for pruning decision trees, developed from sets of examples. When used with uncertain rather than deterministic data, decision-tree induction involves three main stages—creating a complete tree able to classify all the training examples, pruning this tree to give statistical reliability, and processing the pruned tree to improve understandability. This paper concerns the second stage—pruning. It presents empirical comparisons of the five methods across several domains. The results show that three methods—critical value, error complexity and reduced error—perform well, while the other two may cause problems. They also show that there is no significant interaction between the creation and pruning methods.

论文关键词:Decision trees, Knowledge acquisition, Uncertain data, Pruning

论文评审过程:

论文官网地址:https://doi.org/10.1023/A:1022604100933