Choosing Multiple Parameters for Support Vector Machines

作者:Olivier Chapelle, Vladimir Vapnik, Olivier Bousquet, Sayan Mukherjee

摘要

The problem of automatically tuning multiple parameters for pattern recognition Support Vector Machines (SVMs) is considered. This is done by minimizing some estimates of the generalization error of SVMs using a gradient descent algorithm over the set of parameters. Usual methods for choosing parameters, based on exhaustive search become intractable as soon as the number of parameters exceeds two. Some experimental results assess the feasibility of our approach for a large number of parameters (more than 100) and demonstrate an improvement of generalization performance.

论文关键词:support vector machines, kernel selection, leave-one-out procedure, gradient descent, feature selection

论文评审过程:

论文官网地址:https://doi.org/10.1023/A:1012450327387