On the Learnability and Design of Output Codes for Multiclass Problems

作者:Koby Crammer, Yoram Singer

摘要

Output coding is a general framework for solving multiclass categorization problems. Previous research on output codes has focused on building multiclass machines given predefined output codes. In this paper we discuss for the first time the problem of designing output codes for multiclass problems. For the design problem of discrete codes, which have been used extensively in previous works, we present mostly negative results. We then introduce the notion of continuous codes and cast the design problem of continuous codes as a constrained optimization problem. We describe three optimization problems corresponding to three different norms of the code matrix. Interestingly, for the l 2 norm our formalism results in a quadratic program whose dual does not depend on the length of the code. A special case of our formalism provides a multiclass scheme for building support vector machines which can be solved efficiently. We give a time and space efficient algorithm for solving the quadratic program. We describe preliminary experiments with synthetic data show that our algorithm is often two orders of magnitude faster than standard quadratic programming packages. We conclude with the generalization properties of the algorithm.

论文关键词:multiclass categorization, output coding, SVM

论文评审过程:

论文官网地址:https://doi.org/10.1023/A:1013637720281