A Fast Dual Algorithm for Kernel Logistic Regression

作者:S. S. Keerthi, K. B. Duan, S. K. Shevade, A. N. Poo

摘要

This paper gives a new iterative algorithm for kernel logistic regression. It is based on the solution of a dual problem using ideas similar to those of the Sequential Minimal Optimization algorithm for Support Vector Machines. Asymptotic convergence of the algorithm is proved. Computational experiments show that the algorithm is robust and fast. The algorithmic ideas can also be used to give a fast dual algorithm for solving the optimization problem arising in the inner loop of Gaussian Process classifiers.

论文关键词:classification, logistic regression, kernel methods, SMO algorithm

论文评审过程:

论文官网地址:https://doi.org/10.1007/s10994-005-0768-5