Propositionalization-based relational subgroup discovery with RSD
作者:Filip Železný, Nada Lavrač
摘要
Relational rule learning algorithms are typically designed to construct classification and prediction rules. However, relational rule learning can be adapted also to subgroup discovery. This paper proposes a propositionalization approach to relational subgroup discovery, achieved through appropriately adapting rule learning and first-order feature construction. The proposed approach was successfully applied to standard ILP problems (East-West trains, King-Rook-King chess endgame and mutagenicity prediction) and two real-life problems (analysis of telephone calls and traffic accident analysis).
论文关键词:Relational data mining, Propositionalization, Feature construction, Subgroup discovery
论文评审过程:
论文官网地址:https://doi.org/10.1007/s10994-006-5834-0