Aggregate features and ADABOOST for music classification
作者:James Bergstra, Norman Casagrande, Dumitru Erhan, Douglas Eck, Balázs Kégl
摘要
We present an algorithm that predicts musical genre and artist from an audio waveform. Our method uses the ensemble learner ADABOOST to select from a set of audio features that have been extracted from segmented audio and then aggregated. Our classifier proved to be the most effective method for genre classification at the recent MIREX 2005 international contests in music information extraction, and the second-best method for recognizing artists. This paper describes our method in detail, from feature extraction to song classification, and presents an evaluation of our method on three genre databases and two artist-recognition databases. Furthermore, we present evidence collected from a variety of popular features and classifiers that the technique of classifying features aggregated over segments of audio is better than classifying either entire songs or individual short-timescale features.
论文关键词:Genre classification, Artist recognition, Audio feature aggregation, Multiclass ADABOOST , MIREX
论文评审过程:
论文官网地址:https://doi.org/10.1007/s10994-006-9019-7