Learning to Perceive and Act by Trial and Error
作者:Steven D. Whitehead, Dana H. Ballard
摘要
This article considers adaptive control architectures that integrate active sensory-motor systems with decision systems based on reinforcement learning. One unavoidable consequence of active perception is that the agent's internal representation often confounds external world states. We call this phoenomenon perceptual aliasingand show that it destabilizes existing reinforcement learning algorithms with respect to the optimal decision policy. We then describe a new decision system that overcomes these difficulties for a restricted class of decision problems. The system incorporates a perceptual subcycle within the overall decision cycle and uses a modified learning algorithm to suppress the effects of perceptual aliasing. The result is a control architecture that learns not only how to solve a task but also where to focus its visual attention in order to collect necessary sensory information.
论文关键词:Reinforcement learning, deictic representations, sensory-motor integration, hidden state, non-Markov decision problems
论文评审过程:
论文官网地址:https://doi.org/10.1023/A:1022619109594