The Induction of Dynamical Recognizers
作者:Jordan B. Pollack
摘要
A higher order recurrent neural network architecture learns to recognize and generate languages after being “trained” on categorized exemplars. Studying these networks from the perspective of dynamical systems yields two interesting discoveries: First, a longitudinal examination of the learning process illustrates a new form of mechanical inference: Induction by phase transition. A small weight adjustment causes a “bifurcation” in the limit behavior of the network. This phase transition corresponds to the onset of the network's capacity for generalizing to arbitrary-length strings. Second, a study of the automata resulting from the acquisition of previously published training sets indicates that while the architecture is not guaranteed to find a minimal finite automaton consistent with the given exemplars, which is an NP-Hard problem, the architecture does appear capable of generating non-regular languages by exploiting fractal and chaotic dynamics. I end the paper with a hypothesis relating linguistic generative capacity to the behavioral regimes of non-linear dynamical systems.
论文关键词:Connectionism, language, induction, dynamics, fractals
论文评审过程:
论文官网地址:https://doi.org/10.1023/A:1022651113306