Infinite factorization of multiple non-parametric views

作者:Simon Rogers, Arto Klami, Janne Sinkkonen, Mark Girolami, Samuel Kaski

摘要

Combined analysis of multiple data sources has increasing application interest, in particular for distinguishing shared and source-specific aspects. We extend this rationale to the generative and non-parametric clustering setting by introducing a novel non-parametric hierarchical mixture model. The lower level of the model describes each source with a flexible non-parametric mixture, and the top level combines these to describe commonalities of the sources. The lower-level clusters arise from hierarchical Dirichlet Processes, inducing an infinite-dimensional contingency table between the sources. The commonalities between the sources are modeled by an infinite component model of the contingency table, interpretable as non-negative factorization of infinite matrices, or as a prior for infinite contingency tables. With Gaussian mixture components plugged in for continuous measurements, the model is applied to two views of genes, mRNA expression and abundance of the produced proteins, to expose groups of genes that are co-regulated in either or both of the views. We discover complex relationships between the marginals (that are multimodal in both marginals) that would remain undetected by simpler models. Cluster analysis of co-expression is a standard method of screening for co-regulation, and the two-view analysis extends the approach to distinguishing between pre- and post-translational regulation.

论文关键词:Hierarchical Dirichlet process, Multi-view learning, Contingency table, Protein regulation

论文评审过程:

论文官网地址:https://doi.org/10.1007/s10994-009-5155-1