Least-squares independence regression for non-linear causal inference under non-Gaussian noise

作者:Makoto Yamada, Masashi Sugiyama, Jun Sese

摘要

The discovery of non-linear causal relationship under additive non-Gaussian noise models has attracted considerable attention recently because of their high flexibility. In this paper, we propose a novel causal inference algorithm called least-squares independence regression (LSIR). LSIR learns the additive noise model through the minimization of an estimator of the squared-loss mutual information between inputs and residuals. A notable advantage of LSIR is that tuning parameters such as the kernel width and the regularization parameter can be naturally optimized by cross-validation, allowing us to avoid overfitting in a data-dependent fashion. Through experiments with real-world datasets, we show that LSIR compares favorably with a state-of-the-art causal inference method.

论文关键词:Causal inference, Non-linear, Non-Gaussian, Squared-loss mutual information, Least-squares independence regression

论文评审过程:

论文官网地址:https://doi.org/10.1007/s10994-013-5423-y