Generalized Transfer Subspace Learning Through Low-Rank Constraint
作者:Ming Shao, Dmitry Kit, Yun Fu
摘要
It is expensive to obtain labeled real-world visual data for use in training of supervised algorithms. Therefore, it is valuable to leverage existing databases of labeled data. However, the data in the source databases is often obtained under conditions that differ from those in the new task. Transfer learning provides techniques for transferring learned knowledge from a source domain to a target domain by finding a mapping between them. In this paper, we discuss a method for projecting both source and target data to a generalized subspace where each target sample can be represented by some combination of source samples. By employing a low-rank constraint during this transfer, the structure of source and target domains are preserved. This approach has three benefits. First, good alignment between the domains is ensured through the use of only relevant data in some subspace of the source domain in reconstructing the data in the target domain. Second, the discriminative power of the source domain is naturally passed on to the target domain. Third, noisy information will be filtered out during knowledge transfer. Extensive experiments on synthetic data, and important computer vision problems such as face recognition application and visual domain adaptation for object recognition demonstrate the superiority of the proposed approach over the existing, well-established methods.
论文关键词:Transfer learning, Domain adaptation, Low-rank constraint, Subspace learning
论文评审过程:
论文官网地址:https://doi.org/10.1007/s11263-014-0696-6