What Is the Set of Images of an Object Under All Possible Illumination Conditions?
作者:Peter N. Belhumeur, David J. Kriegman
摘要
The appearance of an object depends on both the viewpoint from which it is observed and the light sources by which it is illuminated. If the appearance of two objects is never identical for any pose or lighting conditions, then–in theory–the objects can always be distinguished or recognized. The question arises: What is the set of images of an object under all lighting conditions and pose? In this paper, we consider only the set of images of an object under variable illumination, including multiple, extended light sources and shadows. We prove that the set of n-pixel images of a convex object with a Lambertian reflectance function, illuminated by an arbitrary number of point light sources at infinity, forms a convex polyhedral cone in IRn and that the dimension of this illumination cone equals the number of distinct surface normals. Furthermore, the illumination cone can be constructed from as few as three images. In addition, the set of n-pixel images of an object of any shape and with a more general reflectance function, seen under all possible illumination conditions, still forms a convex cone in IRn. Extensions of these results to color images are presented. These results immediately suggest certain approaches to object recognition. Throughout, we present results demonstrating the illumination cone representation.
论文关键词:variable illumination, object representation, object recognition
论文评审过程:
论文官网地址:https://doi.org/10.1023/A:1008005721484