Diffusion Snakes: Introducing Statistical Shape Knowledge into the Mumford-Shah Functional
作者:Daniel Cremers, Florian Tischhäuser, Joachim Weickert, Christoph Schnörr
摘要
We present a modification of the Mumford-Shah functional and its cartoon limit which facilitates the incorporation of a statistical prior on the shape of the segmenting contour. By minimizing a single energy functional, we obtain a segmentation process which maximizes both the grey value homogeneity in the separated regions and the similarity of the contour with respect to a set of training shapes. We propose a closed-form, parameter-free solution for incorporating invariance with respect to similarity transformations in the variational framework. We show segmentation results on artificial and real-world images with and without prior shape information. In the cases of noise, occlusion or strongly cluttered background the shape prior significantly improves segmentation. Finally we compare our results to those obtained by a level set implementation of geodesic active contours.
论文关键词:image segmentation, shape recognition, statistical learning, variational methods, diffusion snake, geodesic active contours
论文评审过程:
论文官网地址:https://doi.org/10.1023/A:1020826424915