SoftPOSIT: Simultaneous Pose and Correspondence Determination
作者:Philip David, Daniel DeMenthon, Ramani Duraiswami, Hanan Samet
摘要
The problem of pose estimation arises in many areas of computer vision, including object recognition, object tracking, site inspection and updating, and autonomous navigation when scene models are available. We present a new algorithm, called SoftPOSIT, for determining the pose of a 3D object from a single 2D image when correspondences between object points and image points are not known. The algorithm combines the iterative softassign algorithm (Gold and Rangarajan, 1996; Gold et al., 1998) for computing correspondences and the iterative POSIT algorithm (DeMenthon and Davis, 1995) for computing object pose under a full-perspective camera model. Our algorithm, unlike most previous algorithms for pose determination, does not have to hypothesize small sets of matches and then verify the remaining image points. Instead, all possible matches are treated identically throughout the search for an optimal pose. The performance of the algorithm is extensively evaluated in Monte Carlo simulations on synthetic data under a variety of levels of clutter, occlusion, and image noise. These tests show that the algorithm performs well in a variety of difficult scenarios, and empirical evidence suggests that the algorithm has an asymptotic run-time complexity that is better than previous methods by a factor of the number of image points. The algorithm is being applied to a number of practical autonomous vehicle navigation problems including the registration of 3D architectural models of a city to images, and the docking of small robots onto larger robots.
论文关键词:object recognition, autonomous navigation, POSIT, softassign
论文评审过程:
论文官网地址:https://doi.org/10.1023/B:VISI.0000025800.10423.1f