Curvature-Driven PDE Methods for Matrix-Valued Images
作者:Christian Feddern, Joachim Weickert, Bernhard Burgeth, Martin Welk
摘要
Matrix-valued data sets arise in a number of applications including diffusion tensor magnetic resonance imaging (DT-MRI) and physical measurements of anisotropic behaviour. Consequently, there arises the need to filter and segment such tensor fields. In order to detect edge-like structures in tensor fields, we first generalise Di Zenzo’s concept of a structure tensor for vector-valued images to tensor-valued data. This structure tensor allows us to extend scalar-valued mean curvature motion and self-snakes to the tensor setting. We present both two-dimensional and three-dimensional formulations, and we prove that these filters maintain positive semidefiniteness if the initial matrix data are positive semidefinite. We give an interpretation of tensorial mean curvature motion as a process for which the corresponding curve evolution of each generalised level line is the gradient descent of its total length. Moreover, we propose a geodesic active contour model for segmenting tensor fields and interpret it as a minimiser of a suitable energy functional with a metric induced by the tensor image. Since tensorial active contours incorporate information from all channels, they give a contour representation that is highly robust under noise. Experiments on three-dimensional DT-MRI data and an indefinite tensor field from fluid dynamics show that the proposed methods inherit the essential properties of their scalar-valued counterparts.
论文关键词:DT-MRI, denoising, segmentation, edge detection, structure tensor, mean curvature motion, self-snakes, active contours
论文评审过程:
论文官网地址:https://doi.org/10.1007/s11263-006-6854-8