Correspondence-free Structure from Motion

作者:Ameesh Makadia, Christopher Geyer, Kostas Daniilidis

摘要

We present a novel approach for the estimation of 3D-motion directly from two images using the Radon transform. The feasibility of any camera motion is computed by integrating over all feature pairs that satisfy the epipolar constraint. This integration is equivalent to taking the inner product of a similarity function on feature pairs with a Dirac function embedding the epipolar constraint. The maxima in this five dimensional motion space will correspond to compatible rigid motions. The main novelty is in the realization that the Radon transform is a filtering operator: If we assume that the similarity and Dirac functions are defined on spheres and the epipolar constraint is a group action of rotations on spheres, then the Radon transform is a correlation integral. We propose a new algorithm to compute this integral from the spherical Fourier transform of the similarity and Dirac functions. Generating the similarity function now becomes a preprocessing step which reduces the complexity of the Radon computation by a factor equal to the number of feature pairs processed. The strength of the algorithm is in avoiding a commitment to correspondences, thus being robust to erroneous feature detection, outliers, and multiple motions.

论文关键词:motion estimation, structure from motion, registration, harmonic analysis, correspondence-free motion

论文评审过程:

论文官网地址:https://doi.org/10.1007/s11263-007-0035-2