Practical Global Optimization for Multiview Geometry

作者:Fredrik Kahl, Sameer Agarwal, Manmohan Krishna Chandraker, David Kriegman, Serge Belongie

摘要

This paper presents a practical method for finding the provably globally optimal solution to numerous problems in projective geometry including multiview triangulation, camera resectioning and homography estimation. Unlike traditional methods which may get trapped in local minima due to the non-convex nature of these problems, this approach provides a theoretical guarantee of global optimality. The formulation relies on recent developments in fractional programming and the theory of convex underestimators and allows a unified framework for minimizing the standard L 2-norm of reprojection errors which is optimal under Gaussian noise as well as the more robust L 1-norm which is less sensitive to outliers. Even though the worst case complexity of our algorithm is exponential, the practical efficacy is empirically demonstrated by good performance on experiments for both synthetic and real data. An open source MATLAB toolbox that implements the algorithm is also made available to facilitate further research.

论文关键词:Global optimization, Multiple view geometry, Triangulation, Geometry, Reconstruction, Cameras, Camera pose, Branch and bound

论文评审过程:

论文官网地址:https://doi.org/10.1007/s11263-007-0117-1