Action Recognition Using a Bio-Inspired Feedforward Spiking Network

作者:Maria-Jose Escobar, Guillaume S. Masson, Thierry Vieville, Pierre Kornprobst

摘要

We propose a bio-inspired feedforward spiking network modeling two brain areas dedicated to motion (V1 and MT), and we show how the spiking output can be exploited in a computer vision application: action recognition. In order to analyze spike trains, we consider two characteristics of the neural code: mean firing rate of each neuron and synchrony between neurons. Interestingly, we show that they carry some relevant information for the action recognition application. We compare our results to Jhuang et al. (Proceedings of the 11th international conference on computer vision, pp. 1–8, 2007) on the Weizmann database. As a conclusion, we are convinced that spiking networks represent a powerful alternative framework for real vision applications that will benefit from recent advances in computational neuroscience.

论文关键词:Spiking networks, Bio-inspired model, Motion analysis, V1, MT, Action recognition

论文评审过程:

论文官网地址:https://doi.org/10.1007/s11263-008-0201-1