Issues About Retinex Theory and Contrast Enhancement

作者:Marcelo Bertalmío, Vicent Caselles, Edoardo Provenzi

摘要

We present an interpretation of Land’s Retinex theory that we show to be consistent with the original formulation. The proposed model relies on the computation of the expectation value of a suitable random variable weighted with a kernel function, thus the name Kernel-Based Retinex (KBR) for the corresponding algorithm. KBR shares the same intrinsic characteristics of the original Retinex: it can reduce the effect of a color cast and enhance details in low-key images but, since it can only increase pixel intensities, it is not able to enhance over-exposed pictures. Comparing the analytical structure of KBR with that of a recent variational model of color image enhancement, we are able to perform an analysis of the action of KBR on contrast, showing the need to anti-symmetrize its equation in order to produce a two-sided contrast modification, able to enhance both under and over-exposed pictures. The anti-symmetrized KBR equations show clear correspondences with other existing color correction models, in particular ACE, whose relationship with Retinex has always been difficult to clarify. Finally, from an image processing point of view, we mention that both KBR and its antisymmetric version are free from the chromatic noise due to the use of paths in the original Retinex implementation and that they can be suitably approximated in order to reduce their computational complexity from \(\mathcal{O}(N^{2})\) to \(\mathcal{O}(N\log N)\) , being N the number of input pixels.

论文关键词:Retinex, Contrast enhancement, Variational methods, Color image processing

论文评审过程:

论文官网地址:https://doi.org/10.1007/s11263-009-0221-5