Orientation-Matching Minimization for Image Denoising and Inpainting

作者:Jooyoung Hahn, Xue-Cheng Tai, Sofia Borok, Alfred Marcel Bruckstein

摘要

In this paper, we propose an orientation-matching functional minimization for image denoising and image inpainting. Following the two-step TV-Stokes algorithm (Rahman et al. in Scale space and variational methods in computer vision, pp. 473–482, Springer, Heidelberg, 2007; Tai et al. in Image processing based on partial differential equations, pp. 3–22, Springer, Heidelberg, 2006; Bertalmio et al. in Proc. conf. comp. vision pattern rec., pp. 355–362, 2001), a regularized tangential vector field with zero divergence condition is first obtained. Then a novel approach to reconstruct the image is proposed. Instead of finding an image that fits the regularized normal direction from the first step, we propose to minimize an orientation matching cost measuring the alignment between the image gradient and the regularized normal direction. This functional yields a new nonlinear partial differential equation (PDE) for reconstructing denoised and inpainted images. The equation has an adaptive diffusivity depending on the orientation of the regularized normal vector field, providing reconstructed images which have sharp edges and smooth regions. The additive operator splitting (AOS) scheme is used for discretizing Euler-Lagrange equations. We present the results of various numerical experiments that illustrate the improvements obtained with the new functional.

论文关键词:Orientation-matching minimization, TV-Stokes equation, Image denoising, Image inpainting

论文评审过程:

论文官网地址:https://doi.org/10.1007/s11263-010-0371-5