Video Behaviour Mining Using a Dynamic Topic Model
作者:Timothy Hospedales, Shaogang Gong, Tao Xiang
摘要
This paper addresses the problem of fully automated mining of public space video data, a highly desirable capability under contemporary commercial and security considerations. This task is especially challenging due to the complexity of the object behaviors to be profiled, the difficulty of analysis under the visual occlusions and ambiguities common in public space video, and the computational challenge of doing so in real-time. We address these issues by introducing a new dynamic topic model, termed a Markov Clustering Topic Model (MCTM). The MCTM builds on existing dynamic Bayesian network models and Bayesian topic models, and overcomes their drawbacks on sensitivity, robustness and efficiency. Specifically, our model profiles complex dynamic scenes by robustly clustering visual events into activities and these activities into global behaviours with temporal dynamics. A Gibbs sampler is derived for offline learning with unlabeled training data and a new approximation to online Bayesian inference is formulated to enable dynamic scene understanding and behaviour mining in new video data online in real-time. The strength of this model is demonstrated by unsupervised learning of dynamic scene models for four complex and crowded public scenes, and successful mining of behaviors and detection of salient events in each.
论文关键词:Behaviour profiling, Video behaviour mining, Topic models, Learning for vision, Bayesian methods, Probabilistic modelling
论文评审过程:
论文官网地址:https://doi.org/10.1007/s11263-011-0510-7