Context-based entropy coding in AVS video coding standard

作者:

Highlights:

摘要

In this paper, two context-based entropy coding schemes for AVS Part-2 video coding standard are presented. One is Context-based 2D Variable Length Coding (C2DVLC) as a low complexity entropy coding scheme for AVS Part-2 Jizhun profile. C2DVLC uses multiple 2D-VLC tables to exploit the statistical features of DCT coefficients for higher coding efficiency. Exponential–Golomb codes are applied in C2DVLC to code the pairs of the run-length of zero coefficients and the non-zero coefficients for lower storage requirement. The other is Context-based Binary Arithmetic Coding (CBAC) as an enhanced entropy coding scheme for AVS Part-2 Jiaqiang profile. CBAC utilizes all previously coded coefficient magnitudes in a DCT block for context modeling. This enables adaptive arithmetic coding to exploit the redundancy of the high-order Markov process in DCT domain with a few contexts. In addition, a context weighting technique is used to further improve CBAC's coding efficiency. Moreover, CBAC is designed to be compatible to C2DVLC in coding elements which simplifies the implementations. The experimental results demonstrate that both C2DVLC and CBAC can achieve comparable or even slightly higher coding performance when compared to Context-Adaptive Variable Length Coding (CAVLC) in H.264/AVC baseline profile and Context-Based Adaptive Binary Arithmetic Coding (CABAC) in H.264/AVC main profile respectively.

论文关键词:AVS,DCT video coding,Entropy coding,Context modeling,Variable length coding,Arithmetic coding

论文评审过程:Received 2 June 2008, Revised 10 November 2008, Accepted 19 December 2008, Available online 31 December 2008.

论文官网地址:https://doi.org/10.1016/j.image.2008.12.001