Comparative visibility analysis of advertisement images
作者:
Highlights:
•
摘要
Is there any advertisement in a particular dataset more visually efficient than the rest? Here we propose that advertisement images may be rank ordered based on their important information visibility using computational attention.For each one of the advertisement images we first compute a multi-bitrate attention map following a rational model of computational attention. Next, based on the attention map, we calculate the average attention score, for each bitrate, within the areas of interest either provided by the publicist or by the use of automated detection. A high value of the mean attention within the areas of interest at any reconstruction fidelity corresponds to a high saliency of these areas.Thus, for each advertisement, we calculate a rate–attention curve as given by the normalized mean attention score within the areas of interest across bitrates. Each image is decoded at different bitrates of picture quality using a coding method. Unsupervised learning can then be used to perform the clustering of the advertisements into subsets so that images in the same cluster are similar in the rate–attention sense. In the experiments one advertisement has appeared to be more visually efficient than the rest of images in a dataset of example.
论文关键词:Information visibility,Advertisement images,Rate–attention,Clustering
论文评审过程:Received 4 October 2010, Accepted 26 June 2011, Available online 3 July 2011.
论文官网地址:https://doi.org/10.1016/j.image.2011.06.007