Improving relevant subjective testing for validation: Comparing machine learning algorithms for finding similarities in VQA datasets using objective measures

作者:

Highlights:

摘要

Subjective quality assessment is a necessary activity to validate objective measures or to assess the performance of innovative video processing technologies. However, designing and performing comprehensive tests requires expertise and a large effort especially for the execution part. In this work we propose a methodology that, given a set of processed video sequences prepared by video quality experts, attempts to reduce the number of subjective tests by selecting a subset with minimum size which is expected to yield the same conclusions of the larger set. To this aim, we combine information coming from different types of objective quality metrics with clustering and machine learning algorithms that perform the actual selection, therefore reducing the required subjective assessment effort while trying to preserve the variety of content and conditions needed to ensure the validity of the conclusions. Experiments are conducted on one of the largest publicly available subjectively annotated video sequence dataset. As performance criterion, we chose the validation criteria for video quality measurement algorithms established by the International Telecommunication Union.

论文关键词:Subjective testing,Subset selection,Statistical analysis,Video quality assessment,Clustering

论文评审过程:Received 12 June 2018, Revised 8 October 2018, Accepted 11 January 2019, Available online 5 February 2019, Version of Record 8 February 2019.

论文官网地址:https://doi.org/10.1016/j.image.2019.01.004