Distributed Reinforcement Learning Control for Batch Sequencing and Sizing in Just-In-Time Manufacturing Systems

作者:Joonki Hong, Vittaldas V. Prabhu

摘要

This paper presents an approach that is suitable for Just-In-Time (JIT) production for multi-objective scheduling problem in dynamically changing shop floor environment. The proposed distributed learning and control (DLC) approach integrates part-driven distributed arrival time control (DATC) and machine-driven distributed reinforcement learning based control. With DATC, part controllers adjust their associated parts' arrival time to minimize due-date deviation. Within the restricted pattern of arrivals, machine controllers are concurrently searching for optimal dispatching policies. The machine control problem is modeled as Semi Markov Decision Process (SMDP) and solved using Q-learning. The DLC algorithms are evaluated using simulation for two types of manufacturing systems: family scheduling and dynamic batch sizing. Results show that DLC algorithms achieve significant performance improvement over usual dispatching rules in complex real-time shop floor control problems for JIT production.

论文关键词:machine learning, scheduling, Just-In-Time production

论文评审过程:

论文官网地址:https://doi.org/10.1023/B:APIN.0000011143.95085.74