Guided Cluster Discovery with Markov Model
作者:C.H. Li
摘要
Cluster discovery is an essential part of many data mining applications. While cluster discovery process is mainly unsupervised in nature, it can often be aided by a small amount of labeled data. A probabilistic model on the clustering structure is adopted and a novel unified energy equation for clustering that incorporates both labeled data and unlabeled data is introduced. This formulation is inspired by a force-field model integrating labeling constraint on labeled data and similarity information on unlabeled data for joint estimation. Experimental results show that good clusters can be identified using small amount of labeled data.
论文关键词:clustering semi-supervised learning, Markov model
论文评审过程:
论文官网地址:https://doi.org/10.1023/B:APIN.0000047382.74353.8f