Fusion of imprecise qualitative information
作者:Xinde Li, Xianzhong Dai, Jean Dezert, Florentin Smarandache
摘要
In this paper, we present a new 2-tuple linguistic representation model, i.e. Distribution Function Model (DFM), for combining imprecise qualitative information using fusion rules drawn from Dezert-Smarandache Theory (DSmT) framework. Such new approach allows to preserve the precision and efficiency of the combination of linguistic information in the case of either equidistant or unbalanced label model. Some basic operators on imprecise 2-tuple labels are presented together with their extensions for imprecise 2-tuple labels. We also give simple examples to show how precise and imprecise qualitative information can be combined for reasoning under uncertainty. It is concluded that DSmT can deal efficiently with both precise and imprecise quantitative and qualitative beliefs, which extends the scope of this theory.
论文关键词:Information fusion, Qualitative reasoning under uncertainty, DSmT , Imprecise belief structures, 2-Tuple linguistic label
论文评审过程:
论文官网地址:https://doi.org/10.1007/s10489-009-0170-2