Boosting learning and inference in Markov logic through metaheuristics
作者:Marenglen Biba, Stefano Ferilli, Floriana Esposito
摘要
Markov Logic (ML) combines Markov networks (MNs) and first-order logic by attaching weights to first-order formulas and using these as templates for features of MNs. State-of-the-art structure learning algorithms in ML maximize the likelihood of a database by performing a greedy search in the space of structures. This can lead to suboptimal results because of the incapability of these approaches to escape local optima. Moreover, due to the combinatorially explosive space of potential candidates these methods are computationally prohibitive. We propose a novel algorithm for structure learning in ML, based on the Iterated Local Search (ILS) metaheuristic that explores the space of structures through a biased sampling of the set of local optima. We show through real-world experiments that the algorithm improves accuracy and learning time over the state-of-the-art algorithms. On the other side MAP and conditional inference for ML are hard computational tasks. This paper presents two algorithms for these tasks based on the Iterated Robust Tabu Search (IRoTS) metaheuristic. The first algorithm performs MAP inference and we show through extensive experiments that it improves over the state-of-the-art algorithm in terms of solution quality and inference time. The second algorithm combines IRoTS steps with simulated annealing steps for conditional inference and we show through experiments that it is faster than the current state-of-the-art algorithm maintaining the same inference quality.
论文关键词:Statistical relational learning, Markov logic, Metaheuristics, Inference, Structure learning, Probabilistic graphical models
论文评审过程:
论文官网地址:https://doi.org/10.1007/s10489-009-0195-6