Automatic MR brain image segmentation using a multiseed based multiobjective clustering approach

作者:Sriparna Saha, Sanghamitra Bandyopadhyay

摘要

In this paper, the automatic segmentation of a multispectral magnetic resonance image of the brain is posed as a clustering problem in the intensity space. The automatic clustering problem is thereafter modelled as solving a multiobjective optimization (MOO) problem, optimizing a set of cluster validity indices simultaneously. A multiobjective clustering technique, named MCMOClust, is used to solve this problem. MCMOClust utilizes a recently developed simulated annealing based multiobjective optimization method as the underlying optimization strategy. Each cluster is divided into several small hyperspherical subclusters and the centers of all these small sub-clusters are encoded in a string to represent the whole clustering. For assigning points to different clusters, these local sub-clusters are considered individually. For the purpose of objective function evaluation, these sub-clusters are merged appropriately to form a variable number of global clusters. Two cluster validity indices, one based on the Euclidean distance, XB-index, and another recently developed point symmetry distance based cluster validity index, Sym-index, are optimized simultaneously to automatically evolve the appropriate number of clusters present in MR brain images. A semi-supervised method is used to select a single solution from the final Pareto optimal front of MCMOClust. The present method is applied on several simulated T1-weighted, T2-weighted and proton density normal and MS lesion magnetic resonance brain images. Superiority of the present method over Fuzzy C-means, Expectation Maximization clustering algorithms and a newly developed symmetry based fuzzy genetic clustering technique (Fuzzy-VGAPS), are demonstrated quantitatively. The automatic segmentation obtained by multiseed based multiobjective clustering technique (MCMOClust) is also compared with the available ground truth information.

论文关键词:Clustering, Multiobjective optimization (MOO), Symmetry, Simulated annealing (SA), Cluster validity measures, Pareto optimal front

论文评审过程:

论文官网地址:https://doi.org/10.1007/s10489-010-0231-6