Service selection in stochastic environments: a learning-automaton based solution
作者:Anis Yazidi, Ole-Christoffer Granmo, B. John Oommen
摘要
In this paper, we propose a novel solution to the problem of identifying services of high quality. The reported solutions to this problem have, in one way or the other, resorted to using so-called “Reputation Systems” (RSs). Although these systems can offer generic recommendations by aggregating user-provided opinions about the quality of the services under consideration, they are, understandably, prone to “ballot stuffing” and “badmouthing” in a competitive marketplace. In general, unfair ratings may degrade the trustworthiness of RSs, and additionally, changes in the quality of service, over time, can render previous ratings unreliable. As opposed to the reported solutions, in this paper, we propose to solve the problem using tools provided by Learning Automata (LA), which have proven properties capable of learning the optimal action when operating in unknown stochastic environments. Furthermore, they combine rapid and accurate convergence with low computational complexity. In addition to its computational simplicity, unlike most reported approaches, our scheme does not require prior knowledge of the degree of any of the above mentioned problems associated with RSs. Instead, it gradually learns the identity and characteristics of the users which provide fair ratings, and of those who provide unfair ratings, even when these are a consequence of them making unintentional mistakes.
论文关键词:Reputation systems, Learning automata, Stochastic optimization
论文评审过程:
论文官网地址:https://doi.org/10.1007/s10489-011-0280-5