Maintaining the discovered high-utility itemsets with transaction modification

作者:Jerry Chun-Wei Lin, Wensheng Gan, Tzung-Pei Hong

摘要

Most approaches for discovering frequent itemsets derive association rules from a binary database. Profit, cost, and quantity are not considered in traditional association-rule mining. Utility mining was proposed to measure the utilities of purchase products to derive highutility itemsets (HUIs). Many algorithms have been proposed to efficiently find HUIs from a static database. In real-world applications, transactions are inserted, deleted, or modified in dynamic situations. Existing batch approaches have to re-process the updated database since previously discovered HUIs are not maintained. In this paper, a Fast UPdated (FUP) strategy with utility measure and a maintenance algorithm, called FUP-HUI-MOD, are developed to efficiently maintain and update discovered HUIs. When transactions are modified, the proposed algorithm partitions the transactions before and after the modification into two parts, creating four cases. Each case is maintained using a specific procedure to update the discovered HUIs. Based on the designed FUP-HUI-MOD algorithm, the original database is not required to be rescanned each time compared to the state-of-the-art high-utility itemset mining algorithms in batch mode. Experiments are conducted to show that the proposed algorithm outperforms batch algorithms in maintaining HUIs.

论文关键词:Utility mining, FUP concept, Transaction modification, Batch mode, Dynamic databases

论文评审过程:

论文官网地址:https://doi.org/10.1007/s10489-015-0697-3