A swarm intelligent method for traffic light scheduling: application to real urban traffic networks
作者:Wenbin Hu, Huan Wang, Liping Yan, Bo Du
摘要
Traffic lights play an important role nowadays for solving complex and serious urban traffic problems. How to optimize the schedule of hundreds of traffic lights has become a challenging and exciting problem. This paper proposes an inner and outer cellular automaton mechanism combined with particle swarm optimization (IOCA-PSO) method to achieve a dynamic and real-time optimization scheduling of urban traffic lights. The IOCA-PSO method includes the inner cellular model (ICM), the outer cellular model (OCM), and the fitness function. Our work can be divided into following parts: (1) Concise basic transition rules and affiliated transition rules are proposed in ICM, which can help the proposed phase cycle planning (PCP) algorithm achieve a globally sophisticated scheduling and offer effective solutions for different traffic problems; (2) Benefited from the combination of cellular automaton (CA) and particle swarm optimization (PSO), the proposed inner and outer cellular PSO (IOPSO) algorithm in OCM offers a strong search ability to find out the optimal timing control; (3) The proposed fitness function can evaluate and conduct the optimization of traffic lights’ scheduling dynamically for different aims by adjusting parameters. Extensive experiments show that, compared with the PSO method, the genetic algorithm method and the RANDOM method in real cases, IOCA-PSO presents distinct improvements under different traffic conditions, which shows a high adaptability of the proposed method in urban traffic network scales under different traffic flow states, intersection numbers, and vehicle numbers.
论文关键词:Traffic lights, Scheduling, Optimization, Particle swarm optimization, Cellular automaton
论文评审过程:
论文官网地址:https://doi.org/10.1007/s10489-015-0701-y