Robust energy-based least squares twin support vector machines
作者:Mohammad Tanveer, Mohammad Asif Khan, Shen-Shyang Ho
摘要
Twin support vector machine (TSVM), least squares TSVM (LSTSVM) and energy-based LSTSVM (ELS-TSVM) satisfy only empirical risk minimization principle. Moreover, the matrices in their formulations are always positive semi-definite. To overcome these problems, we propose in this paper a robust energy-based least squares twin support vector machine algorithm, called RELS-TSVM for short. Unlike TSVM, LSTSVM and ELS-TSVM, our RELS-TSVM maximizes the margin with a positive definite matrix formulation and implements the structural risk minimization principle which embodies the marrow of statistical learning theory. Furthermore, RELS-TSVM utilizes energy parameters to reduce the effect of noise and outliers. Experimental results on several synthetic and real-world benchmark datasets show that RELS-TSVM not only yields better classification performance but also has a lower training time compared to ELS-TSVM, LSPTSVM, LSTSVM, TBSVM and TSVM.
论文关键词:Machine learning, Support vector machines, Twin support vector machines, Least squares twin support vector machines
论文评审过程:
论文官网地址:https://doi.org/10.1007/s10489-015-0751-1