A diversity control mechanism in many objective optimizations
作者:Kimia Bazargan Lari, Ali Hamzeh
摘要
Multi-objective evolutionary optimization algorithms are among the best optimizers for solving problems in control systems, engineering and industrial planning. The performance of these algorithms degrades severely due to the loss of selection pressure exerted by the Pareto dominance relation which will cause the algorithm to act randomly. Various recent methods tried to provide more selection pressure but this would cause the population to converge to a specific region which is not desirable. Diversity reduction in high dimensional problems which decreases the capabilities of these approaches is a decisive factor in the overall performance of these algorithms. The novelty of this paper is to propose a new diversity measure and a diversity control mechanism which can be used in combination to remedy the mentioned problem. This measure is based on shortest Hamiltonian path for capturing an order of the population in any dimension. In order to control the diversity of population, we designed an adaptive framework which adjusts the selection operator according to diversity variation in the population using different diversity measures as well as our proposed one. This study incorporates the proposed framework in MOEA/D, an efficient widely used evolutionary algorithm. The obtained results validate the motivation on the basis of diversity and performance measures in comparison with the state-of-the-art algorithms and demonstrate the applicability of our algorithm/method in handling many-objective problems. Moreover, an extensive comparison with several diversity measure algorithms reveals the competitiveness of our proposed measure.
论文关键词:Evolutionary algorithm, Many objective Evolutionary algorithms, Population diversity, Optimization
论文评审过程:
论文官网地址:https://doi.org/10.1007/s10489-016-0800-4