Tree-based localized fuzzy twin support vector clustering with square loss function

作者:Reshma Rastogi, Pooja Saigal

摘要

Twin support vector machine (TWSVM) is an efficient supervised learning algorithm, proposed for the classification problems. Motivated by its success, we propose Tree-based localized fuzzy twin support vector clustering (Tree-TWSVC). Tree-TWSVC is a novel clustering algorithm that builds the cluster model as a binary tree, where each node comprises of proposed TWSVM-based classifier, termed as localized fuzzy TWSVM (LF-TWSVM). The proposed clustering algorithm Tree-TWSVC has efficient learning time, achieved due to the tree structure and the formulation that leads to solving a series of systems of linear equations. Tree-TWSVC delivers good clustering accuracy because of the square loss function and it uses nearest neighbour graph based initialization method. The proposed algorithm restricts the cluster hyperplane from extending indefinitely by using cluster prototype, which further improves its accuracy. It can efficiently handle large datasets and outperforms other TWSVM-based clustering methods. In this work, we propose two implementations of Tree-TWSVC: Binary Tree-TWSVC and One-against-all Tree-TWSVC. To prove the efficacy of the proposed method, experiments are performed on a number of benchmark UCI datasets. We have also given the application of Tree-TWSVC as an image segmentation tool.

论文关键词:Localized fuzzy twin support vector machine, Unsupervised learning, Fuzzy tree-based clustering, Square loss function, Image segmentation through clustering

论文评审过程:

论文官网地址:https://doi.org/10.1007/s10489-016-0886-8